EPFL - Printemps 2025 Alexis Michelat

Algebre linéaire avancée II Section de Physique Exercices

Série 4 13 mars 2025

Exercice 1. 1. On note A° = I,,, puis par récurrence A¥ = A . A1 (ie. AF =
A-A---- A, k fois). Pour un polynéme P = ZZ:O ap X" on définit alors P(A) =
Zi:o ap AL,

2. C’est le méme procédé : on note fO = Id, puis par récurrence f* = fo f*! (ie.

F=fofo---of, kfois). Pour un polynéme P = ZZ:O ap X" on définit alors

P(f)=>1_arf*.
3. On trouve
o (5 3
2= 3)
3 (13 8
2= (33)
et donc

s (3 ()G )0

4. Le théoréme de Cayley-Hamilton dit que si x4(X) est le polynéme caractéristique
d’une matrice carrée A, alors y4(A) = 0 (la matrice nulle). On peut aussi I’énoncer
en disant que tout endomorphisme d’un espace vectoriel de dimension finie annule
son polyndme caractéristique.

5. En général deux endomorphismes d’un espace vectoriel V' ne commutent pas, mais
si f e Z(V)et Pet@ sont deux éléments de K[X] alors les endomorphismes
P(f) et Q(f) commutent car les polyndémes P et () commutent :

P(f)oQ(f) = (P-Q)(f) = (@ P)(f) = Q(f) o P(f).

6. A € K est valeur propre de f si et seulement s’il existe v € V non nul tel que
f(v) = M. Observons qu’alors f*(v) = M, ainsi pour P(X) = ZZ:O aitt on a

P(f)v= (Z akfk> (v) = (Z akf’“(v)) = ZakAkU = P()\) - v.

Il s’ensuit que v est un vecteur propre de P(f) avec valeur propre associée P(\).
7. Le sous-espace vectoriel W C V est invariant par f si f(W) C W. De facon
équivalente
weW = fw)eW

8. Il faut montrer que si w appartient au noyau de P(f), alors f(w) appartient
aussi au noyau de P(f), c’est-a-dire que P(f)(f(w)) = 0. Supposons donc que
w € Ker(P(f)), alors P(f)(w) = 0, donc

P(f)(f(w)) = (P(f) o f)(w) = (f o P(f))(w) = f(P(f)(w)) = f(0) = 0.
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Exercice 2. On calcule que x4 = —(X — 1)%(X — 7). Ce polynome est scindé comme

polynéme de R[X], donc A est triangulable sur le corps des réels.

Le spectre est o(A) = {1, 7}, avec multiplicités algébrique 2 pour \; = 1 et 1 pour
Ay = 7. Les espaces propres associés sont

1 1
Ker(A — I) = Vect 1 , Ker(A—7I)= Vect 1
-2 4

Ainsi la multiplicité géométrique de la valeur propre A\; = 1 est strictement plus petite
que sa multiplicité algébrique ce qui prouve que A n’est pas diagonalisable.

Le polynéme spectral de A est v4 = (X — 1)(X — 7), donc le polynéme minimal est
ou bien py = (X —1)(X —7), ou bien ps = (X — 1)*(X — 7). On calcule facilement que
va(A) = (A—13)(A—T713) # 0, donc le polyndme minimal est p4(X) = (X —1)%(X —7).

(Remarquez que v4(A) # 0 redémontre que A n’est pas diagonalisable).

Exercice 3. a) C’est la 2éme réponse qui est correcte. Le théoreme de Hamilton-
Cayley nous dit que 4 divise x 4, donc en particulier deg(u4) < deg(xa), c’est-a-
dire d < n.

Du coup, la 3eme réponse est fausse. Quant a la lere, elle n’a rien a voir avec
la question.

b) C’est la 3éme réponse qui est correcte. Par un théoreme du cours, si le polynéme
caractéristique est scindé alors la somme de toutes les valeurs propres (répétées
selon leur multiplicité) vaut Tr(A). Cela donne miA;+...+m,\, = Tr(A). Lorsque
chaque multiplicité vaut 1, alors r = n (car il y a dans ce cas n racines distinctes
de xa(X)), et donc I'équation générale miA; + ...+ m,\, = Tr(A) devient \; +

coo A =Tr(A).
En revanche, on ne peut rien dire en général de A\ +. ..+ A, lorsque r < n. Supposons
4 x
par exemple quen =3 et que A= 0 4 =% |. Alors les 3 valeurs propres sont 4, 4
0 0 5

et 5 (donc n = 3, r = 2, \y = 4 avec multiplicité m; = 2, et A2 = 5 avec multiplicité
mg = 1). Alors Tr(A) =4+ 445 = 13, mais A\ + Ao = 4 + 5 # Tr(A). Donc la lere
réponse n’est pas correcte.

Exercice 4. a.) Si A est nilpotente d’ordre m, alors 14 = X™ est son polyn6me minimal.
En effet, si A™ = 0, t™ est un polynéme annulateur de A. On sait que le polynome
minimal divise tout polynome annulateur donc le polynome minimal doit étre py = X*
avec k < m, mais si k < m alors m n’est pas 'ordre de nilpotence de A.

Réciproquement, si pus = X™ alors A est nilpotente d’ordre m.
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b.) Si A est nilpotente, alors sa seule valeur propre est A = 0 [preuve : si v est un

vecteur propre : Av = v, alors 0 = A™v = A", donc ™ = 0 (car v # 0), et par
conséquent A = 0]. Donc si A est diagonalisable, alors A est semblable a Diag(0,0,--- ,0)
qui est la matrice nulle. Or tout matrice semblable a la matrice nulle est elle-méme la
matrice nulle.
Autre raisonnement. On vient de voir que si A est nilpotente d’ordre m, alors son poly-
noéme minimal p4(X) = ¢™. Donc 0 est la seule racine de pa(X) (cela redémontre que 0
est la seule valeur propre de A). Or 'hypothese que A est diagonalisable implique que les
racines de p4(X) sont simples. Donc m = 1 et ainsi A = A' = A™ = (.

c.) La fagon la plus simple et rapide de prouver qu'une matrice A strictement triangu-
laire est de remarquer que son polynome caractéristique est x™ et d’appliquer le théoreme
de Cayley-Hamilton qui dit que dans ce cas que A™ = 0.

Voici un autre argument qui n’utilise pas Cayley-Hamilton. Supposons que la matrice
carrée A = (a;;) € M, (K) est strictement triangulaire supérieure, cela signifie que a;; = 0
sii > j. Notons {ej,--- ,e,} € K" la base canonique de K", alors on a Ae; = Zf;ll aje;,
c’est-a-dire

A61 =0
Aeg = Q12 €1

A63 = a13€1 + asg3z €2

Ae, = a1+ agmer+ -+ ap_1p€n-1

On constate donc que Ae; = 0, puis A%ey = A(Aey) = arp - Ae; = 0, puis Ades = 0
etc. et finalement A"e,, = 0. En particulier A"e; = 0 pour tout j, donc A™ = 0 (car une
application linéaire qui s’annule sur tous les vecteurs de bases est 1'application nulle).

Observer que bien que I’énoncé parle de matrice, on a en fait raisonné sur I’endomor-
phisme de K" associé, a savoir x — Az. Si on veut vraiment raisonner matriciellement
on a le schéma suivant (disons pour une matrice A € M4(K)) qui montre ce qu’il se passe
lorsqu’on calcule les puissances d'une matrice strictement triangulaire supérieure :

0 * x % 0 0 x = 0 0 0 = 0O 0 0 O

_ 0 0 =x =« 2 0 0 0 = 3 _ 0O 0 0 O 4 0O 0 0 O
A= 0 0 0 = A" = 0O 0 0 o A’ = 0O 0 0 o A" = 0O 0 0 O
0 0 0 O 0 0 0 o 0 0 0 o 0 0 0 o

On peut facilement rédiger une preuve formelle a partir de ce schéma.

Exercice 5. Supposons que Nj est nilpotent d’ordre m; et Ny est nilpotent d’ordre msy.
Supposons aussi que m; < meg, alors puisque on suppose Ny Ny = No Ny on a

(Ny - Np)™ = Ny™ . N§™ = 0- Ng™ = 0.
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Donc le produit Ny /Ny est nilpotent d’ordre au plus mj;.

Pour montrer que la somme N; 4+ N est nilpotente, on écrit la formule du binéme de

Newton .
m m k atm—Fk
(N} 4+ Ny)™ = ; (k)N1N2 .
Cette formule est valide car on a supposé que les deux matrices commutent. Si m est
assez grand, alors pour chaque 0 < k < m on a ou bien k > m; (et alors N{“ = 0) ou bien
(m — k) > my (et alors Nj*™% = 0), ceci implique (N} + No)™ = 0 et donc que N, + N,
est nilpotent.

En fait on peut préciser la valeur de m. Si on pose m = mj + mg — 1, alors pour tout entier
k on a ou bien k > mj ou bien m — k > mg, car si k < my, alors m —k = (my+ma—1) —k >
mg—k‘—lzmg—k.

Un contre-exemple dans le cas Ny et Ny ne commutent pas est donné par

00 01

Ces deux matrices sont nilpotentes, mais les matrices

01 0 0

ne sont pas nilpotentes.

xerci . a) Pour voir si un polynéme est un polynéme annulateur d’un endomor-

Exercice 6 P 1 t 1 lateur d’ d
phisme linéaire, il suffit d’évaluer ce polynéme sur la matrice de I’endomorphisme
par rapport a une base quelconque.

La matrice de f par rapport a la base canonique est

3 -1 1
A=12 01
1 -1 2
2 —1 1 1 -1 1\°
On obtient (A —L;)(A—2-L;)2=|[ 2 -1 1 2 21| =o.
1 -1 1 1 -1 0

Donc P = (X — 1)(X — 2)% € R[t] est un polynoéme annulateur de f.

(Autre méthode, on peut aussi vérifier que (X — 1)(X — 2)? est le polynome
caractéristique de A et déduire sans calcul que P(A) = ya(A) = 0 par le théoreme
de Cayley-Hamilton).
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b) Un calcul simple donne

2 —1 1 1 -1 1 1 -1 1
(A-I)(A—2-1) = 2 -1 1 2 —2 1 |=(1-11]+#o0,
1 -1 1 1 —1 0 0 00

et (X — 1)(X — 2) n’est donc pas un polyndéme annulateur de f.

Un calcul simple donne

2

2 -1 1 1 -1 1 1 -1 1
(A-T3)*(A-2-I;)=] 2 -1 1 2 -2 1 |=[1-11]4#0,
1 -1 1 1 -1 0 0 00

et (X —1)%(X — 2) n’est donc pas un polynéme annulateur de f.

Comme on a vu que (A —I3)(A — 2-13)? = 0, en multipliant par A — I3 on
obtient (A —13)%(A—2-13)2 = 0 et (X — 1)*(X — 2)? est donc aussi un polynéme
annulateur de f.

c) Comme (X — 1)(X — 2)? est un polyndéme annulateur de f, le polynome minimal
de f divise (X — 1)(X —2)?, donc puy € {(X — 1), (X —2), (X — 1)(X —2),(X —
2)% (X —1)(X —2)?}.

Or, on a vérifi¢ dans b) que (X — 1)(X — 2) n’est pas un polynoéme annulateur
de f, donc (X — 1) et (X — 2) ne le sont pas. De plus on voit aisément que

2

1 -1 1 000
(A-2-,)*=2 -2 1| = -1 10 ]#0.
1 -1 0 -1 10

Conclusion : Le polynéme minimal de endomorphisme f est up = (X —1)(X —2)?
(et dans cet exemple c’est aussi le polyndme caractéristique de f).

Exercice 7. 1) Il suffit de prouver que .% est un sous-espace vectoriel de I’espace des fonc-
tions lisses. Or il est clair que .7 # () (il suffit de constater que la fonction nulle 0 € .%).
Supposons que ¢ et ¢ appartiennent a .% | alors il existe des constantes a, b, ¢, d,a’, V', d
telles que

o(z) = (a+bx)e” + (c+dx)e™, () = (d +Vx)e” + (¢ +dx)e™.
Donc la fonction ¢ + ¢ appartient bien a .% car elle s’écrit
etz ((a+d)+ (b+0)x)e" + ((c+ )+ (d+d)z)e™.
De méme pour tout A € R, on a

(A @)(x) = (Aa+ Abx)e® + (Ae + Adx)e™™,
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qui est bien une fonction du type (a”+b"z)e”+(c"+d"x)e™". Par conséquent \-p € .Z.
2) Une base est ¢1(z) = e, pa(x) = ze”, ps3(x) = e %, p4(x) = ze *. Par définition
tout élément de .# est combinaison linéaire de ces vecteurs, en effet si p(z) = (a+bx)e® +
(c+ dzx)e " alors
© = ap1 + bps + cps + dps.
Pour compléter I'argument on peut ou bien observer que cette écriture de ¢ est unique
ou bien montrer que 1, 9, ¥3, 4 sont linéairement indépendantes.

C’est facile a voir. Si A\; € R sont tels que
AMeP+ X xet+d3e T+ e =0 pour tout = € R,

alors, en divisant par x e” (pour z > 0) et en faisant tendre z — oo, on obtient Ay = 0,
car

6—21‘

+ )\4 6721 — )\2.
i T—00

A
()\161+)\2$€z+)\3€7x+)\4x€71) = ;1—1-)\2—1-)\3

xrer

On peut donc diviser par e® et appliquer le méme argument pour trouver \; = 0. On
divise a présent par x e~*, ce qui donne a la limite Ay = 0, et on a donc A3 = 0 également
en prenant x = 0. On peut aussi résoudre un systeme d’ordre quatre en prenant quatre
valeurs distinctes de x, mais c’est pédestre.

3) On sait déja que D est linéaire, il faut seulement observer que D est interne, i.e.
si p € F, alors D(p) € Z. C'est immédiat par le calcul suivant :

D((a+bx)e® + (c+dx)e™™) = ((a+b) + bx)e® + ((d — ¢) — dx)e™ ",

4) Dans cette base on a

Matrice de D =

oo o
e
|
o~ oo
= = O O

(cette matrice est une forme de Jordan)

5) A partir de la matrice on obtient facilement le polynéme caractéristique

xp=X*—2X?+1=(X-1)*X+1)>2

6) La valeur propre A\ = 1 est de multiplicité algébrique 2 et de multiplicité géo-
métrique 1 (car (D — 1 -1) est de rang 3). Il en est de méme pour la valeur propre
A= —1.
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7) L’opérateur D n’est pas diagonalisable puisque les multiplicités géométrique et
algébrique des valeurs propres ne coincident pas.

h) On sait que le polyndme minimal doit étre du type up = (X — 1)**(X + 1)%2 ou
s1, S peuvent prendre les valeurs 1 ou 2. Or on vérifie que aucune des matrices

(D-L)(D+1), (D-L*(D+1L), (D-L)(D+1)?

n’est nulle, donc le polyndome minimal est up(X) =t —2t24+1 = (X —1)%(X +1)? (c’est
le polynoéme caractéristique). Remarquons que le polyndéme minimal n’est pas a racines
simples, ce qui donne un autre argument pour la question (g).

Exercice 8. Commengons par les fonctions propres. Une fonction ¢(x) est propre pour
lopérateur D et la valeur propre A = 0 si et seulement si Dy = ¢/ = 0, c’est-a-dire ¢ est
constante.

Plus généralement, D¥¢ = 0 si et seulement si ¢ est un polynome de degré < k. Ainsi
I’ensemble des fonctions propres généralisées de 'opérateur de dérivation pour la valeur
propre A = 0 n’est autre que R[X], 'ensemble de tous les polyndmes.

Exercice 9. 1. Toutes les colonnes de H sont multiples d’un méme vecteur non nul,
donc
rang(H) = 1.

2. Par le théoréme du rang, on déduit que dim(Ker(H)) = 4 — 1 = 3. Le noyau
se trouve en résolvant = + y + z +¢t = 0 et une base est donc donnée par
{(1,-1,0,0),(1,0,—1,0),(1,0,0,—1)}.

3. H n’est pas inversible puisque Ker(H) # {0}. Donc det(H) = 0.

, c’est-a-dire H? = 4H.

5. On a H*> —4H = 0, donc le polyndome P = X? —4X = X (X — 4) annule H.

6. Le polynéme P = X (X — 4) est un multiple du polynéme minimal car il annule
la matrice H. Mais ni P, = X ni P, = (X —4) n’annulent H, donc uy = P =
X(X —4).

Les valeurs propres de H sont donc 0 et 4 (car ce sont les racines de pg(X)).
Dans cet exemple le polynome spectral est égal au polynéme minimal : uy = vy =

X(X — 4).

Autre raisonnement pour trouver les valeurs propres. On sait déja que 0 est
valeur propre car Ker(H) # {0}, et il est tres facile de voir que 4 est aussi valeur
propre de H (avec vecteur propre (1,1,1,1)).

7
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7. H est diagonalisable sur le corps Q car le polynéme spectral vy = X (X —4) € Q[X]
annule H (on peut aussi dire que le polynéme minimal pg = X (X —4) € Q[X]
est scindé et ses racines sont simples).

Pour diagonaliser H, on cherche une matrice diagonale D et une matrice inver-
sible P (la matrice modale) telles que D = P~'HP est diagonale, ou de manicre
équivalente HP = PD. 1l est clair que la forme diagonale est donnée par

o O OO
o O OO
o O OO
= O O O

Pour trouver la matrice modale, on cherche une base propre de H. Mais on a déja
explicité une base du noyau et un vecteur propre pour la valeur propre A = 4, on
en déduit la matrice modale

1 11

-1 0 01

P= 0 -1 01

0 0 -1 1

On vérifie tres facilement que

000 4
000 4
HP=PD = 00 0 4
000 4

On peut aussi calculer P~! puis vérifier que P~'HP = D, ca n’est pas vraiment
nécessaire et ¢a demande un peu plus de calculs :

1 -3 1 1
11 1 -3 1

71__
P 411 1 1 -3
1 1 1 1




