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Exercice 1. 1. On note A0 = In, puis par récurrence Ak = A · Ak−1 (i.e. Ak =
A · A · · · · A, k fois). Pour un polynôme P =

∑d
k=0 akX

k on définit alors P (A) =∑d
k=0 akA

k.
2. C’est le même procédé : on note f 0 = Id, puis par récurrence fk = f ◦ fk−1 (i.e.
fk = f ◦ f ◦ · · · ◦ f , k fois). Pour un polynôme P =

∑d
k=0 akX

k on définit alors
P (f) =

∑d
k=0 akf

k.
3. On trouve

A2 =
(

5 3
3 2

)
A3 =

(
13 8
8 5

)
,

et donc

P (A) = A3 − A− 4 I2 =
(

13 8
8 5

)
−
(

2 1
1 1

)
−
(

4 0
0 1

)
=
(

7 7
7 0

)
.

4. Le théorème de Cayley-Hamilton dit que si χA(X) est le polynôme caractéristique
d’une matrice carrée A, alors χA(A) = 0 (la matrice nulle). On peut aussi l’énoncer
en disant que tout endomorphisme d’un espace vectoriel de dimension finie annule
son polynôme caractéristique.

5. En général deux endomorphismes d’un espace vectoriel V ne commutent pas, mais
si f ∈ L (V ) et P et Q sont deux éléments de K[X] alors les endomorphismes
P (f) et Q(f) commutent car les polynômes P et Q commutent :

P (f) ◦Q(f) = (P ·Q)(f) = (Q · P )(f) = Q(f) ◦ P (f).

6. λ ∈ K est valeur propre de f si et seulement s’il existe v ∈ V non nul tel que
f(v) = λv. Observons qu’alors fk(v) = λkv, ainsi pour P (X) =

∑d
k=0 akt

k on a

P (f)v =
(

d∑
k=0

akf
k

)
(v) =

(
d∑

k=0

akf
k(v)

)
=

d∑
k=0

akλ
kv = P (λ) · v.

Il s’ensuit que v est un vecteur propre de P (f) avec valeur propre associée P (λ).
7. Le sous-espace vectoriel W ⊂ V est invariant par f si f(W ) ⊂ W . De façon

équivalente
w ∈ W ⇒ f(w) ∈ W

8. Il faut montrer que si w appartient au noyau de P (f), alors f(w) appartient
aussi au noyau de P (f), c’est-à-dire que P (f)(f(w)) = 0. Supposons donc que
w ∈ Ker(P (f)), alors P (f)(w) = 0, donc

P (f)(f(w)) = (P (f) ◦ f)(w) = (f ◦ P (f))(w) = f(P (f)(w)) = f(0) = 0.
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Exercice 2. On calcule que χA = −(X − 1)2(X − 7). Ce polynôme est scindé comme
polynôme de R[X], donc A est triangulable sur le corps des réels.

Le spectre est σ(A) = {1, 7}, avec multiplicités algébrique 2 pour λ1 = 1 et 1 pour
λ2 = 7. Les espaces propres associés sont

Ker(A− I) = Vect


 1

1
−2

 , Ker(A− 7I) = Vect


1

1
4


Ainsi la multiplicité géométrique de la valeur propre λ1 = 1 est strictement plus petite
que sa multiplicité algébrique ce qui prouve que A n’est pas diagonalisable.

Le polynôme spectral de A est νA = (X − 1)(X − 7), donc le polynôme minimal est
ou bien µA = (X − 1)(X − 7), ou bien µA = (X − 1)2(X − 7). On calcule facilement que
νA(A) = (A− I3)(A− 7 I3) ̸= 0, donc le polynôme minimal est µA(X) = (X− 1)2(X− 7).

(Remarquez que νA(A) ̸= 0 redémontre que A n’est pas diagonalisable).

Exercice 3. a) C’est la 2ème réponse qui est correcte. Le théorème de Hamilton-
Cayley nous dit que µA divise χA, donc en particulier deg(µA) ≤ deg(χA), c’est-à-
dire d ≤ n.

Du coup, la 3ème réponse est fausse. Quant à la 1ère, elle n’a rien à voir avec
la question.

b) C’est la 3ème réponse qui est correcte. Par un théorème du cours, si le polynôme
caractéristique est scindé alors la somme de toutes les valeurs propres (répétées
selon leur multiplicité) vaut Tr(A). Cela donne m1λ1+. . .+mrλr = Tr(A). Lorsque
chaque multiplicité vaut 1, alors r = n (car il y a dans ce cas n racines distinctes
de χA(X)), et donc l’équation générale m1λ1 + . . . + mrλr = Tr(A) devient λ1 +
. . .+ λn = Tr(A).

En revanche, on ne peut rien dire en général de λ1+. . .+λr lorsque r < n. Supposons

par exemple que n = 3 et que A =

 4 ∗ ∗
0 4 ∗
0 0 5

. Alors les 3 valeurs propres sont 4, 4

et 5 (donc n = 3, r = 2, λ1 = 4 avec multiplicité m1 = 2, et λ2 = 5 avec multiplicité
m2 = 1). Alors Tr(A) = 4 + 4 + 5 = 13, mais λ1 + λ2 = 4 + 5 ̸= Tr(A). Donc la 1ère
réponse n’est pas correcte.

Exercice 4. a.) Si A est nilpotente d’ordre m, alors µA = Xm est son polynôme minimal.
En effet, si Am = 0, tm est un polynôme annulateur de A. On sait que le polynôme
minimal divise tout polynôme annulateur donc le polynôme minimal doit être µA = Xk

avec k ≤ m, mais si k < m alors m n’est pas l’ordre de nilpotence de A.
Réciproquement, si µA = Xm alors A est nilpotente d’ordre m.
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b.) Si A est nilpotente, alors sa seule valeur propre est λ = 0 [preuve : si v est un
vecteur propre : Av = λv, alors 0 = Amv = λmv, donc λm = 0 (car v ̸= 0), et par
conséquent λ = 0]. Donc si A est diagonalisable, alors A est semblable à Diag(0, 0, · · · , 0)
qui est la matrice nulle. Or tout matrice semblable à la matrice nulle est elle-même la
matrice nulle.
Autre raisonnement. On vient de voir que si A est nilpotente d’ordre m, alors son poly-
nôme minimal µA(X) = tm. Donc 0 est la seule racine de µA(X) (cela redémontre que 0
est la seule valeur propre de A). Or l’hypothèse que A est diagonalisable implique que les
racines de µA(X) sont simples. Donc m = 1 et ainsi A = A1 = Am = 0.

c.) La façon la plus simple et rapide de prouver qu’une matrice A strictement triangu-
laire est de remarquer que son polynôme caractéristique est xn et d’appliquer le théorème
de Cayley-Hamilton qui dit que dans ce cas que An = 0.

Voici un autre argument qui n’utilise pas Cayley-Hamilton. Supposons que la matrice
carrée A = (aij) ∈ Mn(K) est strictement triangulaire supérieure, cela signifie que aij = 0
si i ≥ j. Notons {e1, · · · , en} ∈ Kn la base canonique de Kn, alors on a Aej =

∑j−1
i=1 aijei,

c’est-à-dire

Ae1 = 0
Ae2 = a12 e1

Ae3 = a13 e1 + a23 e2

· · ·
Aen = a1n e1 + a2n e2 + · · · + an−1,n en−1

On constate donc que Ae1 = 0, puis A2e2 = A(Ae2) = a12 · Ae1 = 0, puis A3e3 = 0
etc. et finalement Anen = 0. En particulier Anej = 0 pour tout j, donc An = 0 (car une
application linéaire qui s’annule sur tous les vecteurs de bases est l’application nulle).

Observer que bien que l’énoncé parle de matrice, on a en fait raisonné sur l’endomor-
phisme de Kn associé, à savoir x 7→ Ax. Si on veut vraiment raisonner matriciellement
on a le schéma suivant (disons pour une matrice A ∈ M4(K)) qui montre ce qu’il se passe
lorsqu’on calcule les puissances d’une matrice strictement triangulaire supérieure :

A =
( 0 ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

)
A2 =

( 0 0 ∗ ∗
0 0 0 ∗
0 0 0 0
0 0 0 0

)
A3 =

( 0 0 0 ∗
0 0 0 0
0 0 0 0
0 0 0 0

)
A4 =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
On peut facilement rédiger une preuve formelle à partir de ce schéma.

Exercice 5. Supposons que N1 est nilpotent d’ordre m1 et N2 est nilpotent d’ordre m2.
Supposons aussi que m1 ≤ m2, alors puisque on suppose N1N2 = N2N1 on a

(N1 ·N2)m1 = Nm1
1 ·Nm1

2 = 0 ·Nm1
2 = 0.
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Donc le produit N1N2 est nilpotent d’ordre au plus m1.

Pour montrer que la somme N1 +N2 est nilpotente, on écrit la formule du binôme de
Newton

(N1 +N2)m =
m∑

k=0

(
m

k

)
Nk

1N
m−k
2 .

Cette formule est valide car on a supposé que les deux matrices commutent. Si m est
assez grand, alors pour chaque 0 ≤ k ≤ m on a ou bien k ≥ m1 (et alors Nk

1 = 0) ou bien
(m − k) ≥ m2 (et alors Nm−k

2 = 0), ceci implique (N1 + N2)m = 0 et donc que N1 + N2
est nilpotent.

En fait on peut préciser la valeur de m. Si on pose m = m1 + m2 − 1, alors pour tout entier
k on a ou bien k ≥ m1 ou bien m − k ≥ m2, car si k < m1, alors m − k = (m1 + m2 − 1) − k >

m2 − k − 1 ≥ m2 − k.

Un contre-exemple dans le cas N1 et N2 ne commutent pas est donné par

N1 =
(

0 0
1 0

)
et N2 =

(
0 1
0 0

)
.

Ces deux matrices sont nilpotentes, mais les matrices

(N1 +N2) =
(

0 1
1 0

)
et N1 ·N2 =

(
0 0
0 1

)
ne sont pas nilpotentes.

Exercice 6. a) Pour voir si un polynôme est un polynôme annulateur d’un endomor-
phisme linéaire, il suffit d’évaluer ce polynôme sur la matrice de l’endomorphisme
par rapport à une base quelconque.

La matrice de f par rapport à la base canonique est

A =

 3 −1 1
2 0 1
1 −1 2

 .

On obtient (A− I3)(A− 2 · I3)2 =

 2 −1 1
2 −1 1
1 −1 1

 1 −1 1
2 −2 1
1 −1 0

2

= 0.

Donc P = (X − 1)(X − 2)2 ∈ R[t] est un polynôme annulateur de f .
(Autre méthode, on peut aussi vérifier que (X − 1)(X − 2)2 est le polynôme

caractéristique de A et déduire sans calcul que P (A) = χA(A) = 0 par le théorème
de Cayley-Hamilton).
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b) Un calcul simple donne

(A− I3)(A− 2 · I3) =

 2 −1 1
2 −1 1
1 −1 1

 1 −1 1
2 −2 1
1 −1 0

 =

 1 −1 1
1 −1 1
0 0 0

 ̸= 0 ,

et (X − 1)(X − 2) n’est donc pas un polynôme annulateur de f .
Un calcul simple donne

(A− I3)2(A− 2 · I3) =

 2 −1 1
2 −1 1
1 −1 1

2 1 −1 1
2 −2 1
1 −1 0

 =

 1 −1 1
1 −1 1
0 0 0

 ̸= 0 ,

et (X − 1)2(X − 2) n’est donc pas un polynôme annulateur de f .
Comme on a vu que (A − I3)(A − 2 · I3)2 = 0, en multipliant par A − I3 on

obtient (A− I3)2(A− 2 · I3)2 = 0 et (X − 1)2(X − 2)2 est donc aussi un polynôme
annulateur de f .

c) Comme (X − 1)(X − 2)2 est un polynôme annulateur de f , le polynôme minimal
de f divise (X − 1)(X − 2)2, donc µf ∈ {(X − 1), (X − 2), (X − 1)(X − 2), (X −
2)2, (X − 1)(X − 2)2}.

Or, on a vérifié dans b) que (X − 1)(X − 2) n’est pas un polynôme annulateur
de f , donc (X − 1) et (X − 2) ne le sont pas. De plus on voit aisément que

(A− 2 · I2)2 =

 1 −1 1
2 −2 1
1 −1 0

2

=

 0 0 0
−1 1 0
−1 1 0

 ̸= 0.

Conclusion : Le polynôme minimal de l’endomorphisme f est µf = (X−1)(X−2)2

(et dans cet exemple c’est aussi le polynôme caractéristique de f).

Exercice 7. 1) Il suffit de prouver que F est un sous-espace vectoriel de l’espace des fonc-
tions lisses. Or il est clair que F ̸= ∅ (il suffit de constater que la fonction nulle 0 ∈ F ).
Supposons que φ et ψ appartiennent à F , alors il existe des constantes a, b, c, d, a′, b′, c′, d′

telles que

φ(x) = (a+ bx)ex + (c+ dx)e−x, ψ(x) = (a′ + b′x)ex + (c′ + d′x)e−x.

Donc la fonction φ+ ψ appartient bien à F car elle s’écrit

φ+ ψ : x 7→ ((a+ a′) + (b+ b′)x)ex + ((c+ c′) + (d+ d′)x)e−x.

De même pour tout λ ∈ R, on a

(λ · φ)(x) = (λa+ λbx)ex + (λc+ λdx)e−x,
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qui est bien une fonction du type (a′′+b′′x)ex+(c′′+d′′x)e−x. Par conséquent λ·φ ∈ F .

2) Une base est φ1(x) = ex, φ2(x) = xex, φ3(x) = e−x, φ4(x) = xe−x. Par définition
tout élément de F est combinaison linéaire de ces vecteurs, en effet si φ(x) = (a+bx)ex +
(c+ dx)e−x alors

φ = aφ1 + bφ2 + cφ3 + dφ4.

Pour compléter l’argument on peut ou bien observer que cette écriture de φ est unique
ou bien montrer que φ1, φ2, φ3, φ4 sont linéairement indépendantes.

C’est facile à voir. Si λi ∈ R sont tels que

λ1 e
x + λ2 x e

x + λ3 e
−x + λ4 x e

−x = 0 pour tout x ∈ R,

alors, en divisant par x ex (pour x > 0) et en faisant tendre x → ∞, on obtient λ2 = 0,
car

1
xex

(
λ1 e

x + λ2 x e
x + λ3 e

−x + λ4 x e
−x
)

= λ1

x
+ λ2 + λ3

e−2x

x
+ λ4 e

−2x −→
x→∞

λ2.

On peut donc diviser par ex et appliquer le même argument pour trouver λ1 = 0. On
divise à présent par x e−x, ce qui donne à la limite λ4 = 0, et on a donc λ3 = 0 également
en prenant x = 0. On peut aussi résoudre un système d’ordre quatre en prenant quatre
valeurs distinctes de x, mais c’est pédestre.

3) On sait déjà que D est linéaire, il faut seulement observer que D est interne, i.e.
si φ ∈ F , alors D(φ) ∈ F . C’est immédiat par le calcul suivant :

D((a+ bx)ex + (c+ dx)e−x) = ((a+ b) + bx)ex + ((d− c) − dx)e−x,

4) Dans cette base on a

Matrice de D =


1 1 0 0
0 1 0 0
0 0 −1 1
0 0 0 −1


(cette matrice est une forme de Jordan)

5) A partir de la matrice on obtient facilement le polynôme caractéristique

χD = X4 − 2X2 + 1 = (X − 1)2(X + 1)2.

6) La valeur propre λ = 1 est de multiplicité algébrique 2 et de multiplicité géo-
métrique 1 (car (D − 1 · I) est de rang 3). Il en est de même pour la valeur propre
λ = −1.
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7) L’opérateur D n’est pas diagonalisable puisque les multiplicités géométrique et
algébrique des valeurs propres ne coïncident pas.

h) On sait que le polynôme minimal doit être du type µD = (X − 1)s1(X + 1)s2 où
s1, s2 peuvent prendre les valeurs 1 ou 2. Or on vérifie que aucune des matrices

(D − I4)(D + I4), (D − I4)2(D + I4), (D − I4)(D + I4)2

n’est nulle, donc le polynôme minimal est µD(X) = t4 − 2t2 + 1 = (X− 1)2(X+ 1)2 (c’est
le polynôme caractéristique). Remarquons que le polynôme minimal n’est pas à racines
simples, ce qui donne un autre argument pour la question (g).

Exercice 8. Commençons par les fonctions propres. Une fonction φ(x) est propre pour
l’opérateur D et la valeur propre λ = 0 si et seulement si Dφ = φ′ = 0, c’est-à-dire φ est
constante.

Plus généralement, Dkφ = 0 si et seulement si φ est un polynôme de degré < k. Ainsi
l’ensemble des fonctions propres généralisées de l’opérateur de dérivation pour la valeur
propre λ = 0 n’est autre que R[X], l’ensemble de tous les polynômes.

Exercice 9. 1. Toutes les colonnes de H sont multiples d’un même vecteur non nul,
donc
rang(H) = 1.

2. Par le théorème du rang, on déduit que dim(Ker(H)) = 4 − 1 = 3. Le noyau
se trouve en résolvant x + y + z + t = 0 et une base est donc donnée par
{(1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1)}.

3. H n’est pas inversible puisque Ker(H) ̸= {0}. Donc det(H) = 0.

4. H2 =


4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

, c’est-à-dire H2 = 4H.

5. On a H2 − 4H = 0, donc le polynôme P = X2 − 4X = X(X − 4) annule H.
6. Le polynôme P = X(X − 4) est un multiple du polynôme minimal car il annule

la matrice H. Mais ni P1 = X ni P2 = (X − 4) n’annulent H, donc µH = P =
X(X − 4).

Les valeurs propres de H sont donc 0 et 4 (car ce sont les racines de µH(X)).
Dans cet exemple le polynôme spectral est égal au polynôme minimal : µH = νH =
X(X − 4).

Autre raisonnement pour trouver les valeurs propres. On sait déjà que 0 est
valeur propre car Ker(H) ̸= {0}, et il est très facile de voir que 4 est aussi valeur
propre de H (avec vecteur propre (1, 1, 1, 1)).
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7. H est diagonalisable sur le corps Q car le polynôme spectral νH = X(X−4) ∈ Q[X]
annule H (on peut aussi dire que le polynôme minimal µH = X(X − 4) ∈ Q[X]
est scindé et ses racines sont simples).

Pour diagonaliser H, on cherche une matrice diagonale D et une matrice inver-
sible P (la matrice modale) telles que D = P−1HP est diagonale, ou de manière
équivalente HP = PD. Il est clair que la forme diagonale est donnée par

D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4


Pour trouver la matrice modale, on cherche une base propre de H. Mais on a déjà
explicité une base du noyau et un vecteur propre pour la valeur propre λ = 4, on
en déduit la matrice modale

P =


1 1 1 1

−1 0 0 1
0 −1 0 1
0 0 −1 1


On vérifie très facilement que

HP = PD =


0 0 0 4
0 0 0 4
0 0 0 4
0 0 0 4


On peut aussi calculer P−1 puis vérifier que P−1HP = D, ça n’est pas vraiment
nécessaire et ça demande un peu plus de calculs :

P−1 = 1
4


1 −3 1 1
1 1 −3 1
1 1 1 −3
1 1 1 1

 .
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